
12 The Delphi Magazine Issue 49

The Factory Pattern
An example of using design patterns in Delphi
by Peter Hinrichsen

If you only get one thing from
reading this article, then I hope it

will be an awareness of the growth
of design patterns. Specifically, I
hope that you will find that the fac-
tory pattern is a technique which
helps you to write better, more
reusable and more easily maintain-
able, applications.

I was first introduced to the
factory pattern by Mark Richards,
who was acting as mentor on a
multi-tier project I was involved in.
Over the past six months, I have
used the factory pattern to get me
out of dozens of tight corners and
will share with you what I have
learnt in this article.

The Factory Pattern
The factory pattern is a creational
pattern that enables you to delay
choosing the class of an object
until runtime. As a result, any situa-
tion where there is more than one
way an object can be created and
used is a candidate for the factory
pattern.

I believe that, in programming,
there are only three integers you
need to worry about: zero, one and
n. Using the example of a system
that lets a user choose a report to
run, if there are zero possible
reports, then we can very quickly
move onto something else to do. If
there is only one report to be run,
then we can write a single OnClick
event handler behind a button or
menu item to execute the report.

However, if there is more than
one report to run, the usual
approach is to develop some logic

to let the user choose
their report, then to
write some more logic
so our application will
execute the chosen
report. It is this logic
that can often cause
us to write the if...
then... else... state-
ment from hell.

The factory pattern
solves this problem
by introducing some very flexible
and powerful logic that chooses
the object to create.

The Procedural Approach
To demonstrate the advantages of
using the factory pattern to create
objects, we will first look at some of
the drawbacks of writing proce-
dural code to choose which object
to create.

This shall be done using the
application described above,
which lets the user select from a
list of reports via the user inter-
face. The current requirement is
for just three reports (address list-
ing, mailing labels and a data
export), so we shall use an if...
then... else... statement to sort
out which report the user has
selected. Our application’s main
form is shown in Figure 1.

To build this rather trivial exam-
ple we will first create a list of
reports to display, so the user can
choose which report to run. We
define the report names as con-
stants, so that they can be easily
referenced in code, then add them
to a listbox. This is done in the
report selection form’s OnCreate
event, as shown in Listing 1.

➤ Figure 1

// Fill the listBox with possible report names
procedure TFormReportSelection.FormCreate(Sender: TObject);
begin
with lbReports.Items do begin
Clear;
Add(cgStrReportNameListing);
Add(cgStrReportNameMailingLabels);
Add(cgStrReportNameDataExport);

end;
end;

➤ Listing 1

The constants are defined in
their own unit, constants.pas. It
becomes important to break code
into smaller units when an applica-
tion is written for multi-tier.

In the OnClick event handler of a
button or menu choice, we have
the code shown in Listing 2.

We then create a hierarchy of
reports descending from the
abstract class TReportAbstract. It
is important to understand the use
of abstract and concrete classes
when you are using the factory pat-
tern and we shall focus on this in
greater detail later. TReport-
Abstract is a descendent of TForm
and implements the additional
method Execute. This method has
the single command ShowModal in
its body. The descendent forms
add additional functionality to
Execute in order to to build the
report as required. Figure 2 shows
the UML diagram for the report
class hierarchy.

Once we have created the appro-
priate instance of TReportAbstract,
we hit its Execute method inside a
try...finally... block.

Disadvantages Of
The Procedural Approach
This code is clean and readable
but, as the number of reports
grows, it will become harder and
harder to maintain. With each
report that is added it is necessary
to create an additional constant,

September 1999 The Delphi Magazine 13

// Run the selected report, using the If-Then-Else
// programming style
procedure TFormReportSelection.btnIfThenElseClick(
Sender: TObject);

var lStrReportName : string ; lReport : TFormReportAbstract;
begin
// If no report is selected, then raise an exception
if lbReports.ItemIndex = -1 then
Raise Exception.Create('Please select a report',
mtError, [mbOK], 0) ;

// Read the selected report name into a string variable
lStrReportName := lbReports.Items[lbReports.ItemIndex];
// The If-Then-Else statement
if lStrReportName = cgStrReportNameListing then
begin
lReport := TFormReportNameListing.Create(nil) ;

end else if lStrReportName = cgStrReportNameMailingLabels
then begin

lReport := TFormReportAddressLabel.Create(nil) ;
end else if lStrReportName = cgStrReportNameDataExport
then begin
lReport := TFormReportDataExport.Create(nil) ;

end else begin
// more else if lStrReportName = ??? for each report...

else begin
raise Exception.Create('Cannot run report. ‘+
‘Report name <' + lStrReportName + '> not known. ‘+
‘Called in ' + ClassName + '.btnIfThenElseClick.') ;

end ;
// Execute the report
try
lReport.Execute ;

finally
lReport.Free ;

end ;
end ;

➤ Listing 2

add it to the TListBox and synchro-
nise the if... then... else...
statement. The compiler will not
catch a mismatch between the
TListBox and the if... then...
else... statement. As an example, I
am working on a system with 56
reports: once the number grew
beyond about 12, the code became
difficult to maintain and expand. I
restructured the system to be
factory based, which solved most
of our maintenance problems.

Factory Pattern To The Rescue
The factory pattern is the solution
to the bloated if... then...
else... statement. We create a
factory and register all the possible
reports. When we want to run a
report, we pass the factory the
report name and it returns the
appropriate report object. We
simply fire the report’s Execute
method then free the object when
we are done.

The report factory comprises
three objects working together:
the TReportFactory, TReportMapping
and Class-Reference.

The main object is the
TReportFactory, which contains

a TList of TReportMappings. There
must be one TReportMapping object
in the list for each report the fac-
tory will produce. As well as the
usual constructor and destructor,
the TReportFactory has the proce-
dure RegisterReport and the
function GetReport.

The TReportMapping class is
simply a container for information
about how to create a report
object. It has two properties,
ReportName and ReportClass.
ReportName holds a string which is
used to identify the report. These
strings are defined as constants in
a separate source file so they are
easily accessible. ReportClass is a
Class-Reference type and is used to
identify the class of the report that
the Factory will produce.

Class-Reference types are dis-
cussed in the Delphi Help under
Class of. The Help tells us that
Class-Reference types are useful
when you want to invoke a con-
structor (like TObject.Create) on a
class or object whose actual type is
unknown at compile time. This
means that we can execute code
like that shown in Listing 3.

Implementing
The Report Factory

We will examine the
Class-Reference, then
the TReportMapping,
followed by the
TReportFactory, which
will tie all the pieces
together.

Class-Reference is
the first declaration in
the type section of our
FactoryReport unit.

TForm

TReport Abstract

Execute

TReport Address Label TReport Listing TReport Data Export

We add the
Execute Method
here

MyClassName := TReportListing;
MyReport :=
MyClassName.Create(nil);

// An instance of TReportListing
MyReport.Execute ;

➤ Listing 3

➤ Figure 2

Listing 4 shows how this is done in
code.

Remember to include Classes
(for access to TObject) and
FReportAbstract (for access to
TReportAbstract) in the interface
section’s uses clause.

Next, we declare the
TReportMapping object. The code
for this is shown in Listing 5.

The TReportMapping object is a
simple holder for two pieces of
information. The ReportName,
which was defined in the file
constants.pas, and ReportClass,
which is a Class-Reference that
identifies the type of object to be
created by the factory. The con-
structor we call is called CreateExt
and takes two parameters, the
ReportName and the Report
Class-Reference. The principle of
renaming a constructor that has a
different signature (or list of
parameters) to the default was
introduced to me by Mark Rich-
ards. This is a handy technique to
overcome the complexities of
method overloading (having two

unit FactoryReport;
interface
uses
// For TObject:
Classes,
// For TReportAbstract:
FReportAbstract;

type
TReportClass =
class of TFormReportAbstract;

➤ Listing 4

14 The Delphi Magazine Issue 49

TReportMapping = class(TObject)
private
FStrReportName : string ;
FReportClass : TReportClass ;

public
Constructor CreateExt(const pStrReportName: string; pClassRef: TReportClass);
property ReportName : string read FStrReportName write FStrReportName ;
property ReportClass : TReportClass read FReportClass write FReportClass ;

end ;

constructor TReportMapping.CreateExt(const pStrReportName: string;
pClassRef: TReportClass);

begin
Create ;
ReportName := pStrReportName ;
ReportClass := pClassRef ;

end;

➤ Above: Listing 5 ➤ Below: Listing 6

methods with the same name, but
different signatures). The imple-
mentation (the code inside the
method) of CreateExt is shown in
Listing 6.

The main trap for inexperienced
players here (it had me scratching
my head for a while) is that we use
Call Create, not Inherited Create,
in the body of CreateExt. Although
they will both perform the same
task in this instance, if we had
some custom code in the overrid-
den Create, it would not be exe-
cuted if we called Inherited Create.

To understand how the pieces
are brought together, read through
the interface code in Listing 7.

Firstly, we have a private
TStringList variable, FReport-
Mappings, which is used to hold a
list of ReportNames and TReport-
Mapping objects. FReportMappings is
created in the constructor and
destroyed in the destructor of
TFactoryReport. There is no rocket
science here, except we must
remember to Free all the objects
we added to the Objects property
of FReportMappings. The construc-
tor and destructor of TFactory-
Report are shown in Listing 8.

The next method we need to
know about is RegisterReport
which is called in the initialization
section of the units that contain
the report definitions. Register-
Report is called once for each
report to be registered with the
Factory. The constant, ReportName
and report’s Class-Reference are
passed as parameters. The source
code of RegisterReport is shown in
Listing 9. RegisterReport scans the
ReportMappings string list looking

for the report name. If the report
name is found, then the report is
already registered and an error is
reported. We do not use Assert, or
raise an exception here as
RegisterReport will most likely
have been called from within a
unit’s initialization section.
Delphi’s exception handling mech-
anism may not have been created
yet and if an exception is raised
here, the fairly meaningless 216
error (Access Violation) is
reported.

Once we have done our preemp-
tive error checking, we are able to
create the ReportMapping object
and add it to the list.

The method GetReport is used to
create the instance of TFormReport-
Abstract we have requested. The
first few lines of code in GetReport
check that the report has been reg-
istered with the factory and raise

an exception if it can not be found.
(An exception is all right here, as
we will be out of the initializa-
tion sections of the application’s
code and the application will be
executing normally). If the report
name is found in the list, we are
able to call the constructor against
the associated Class-Reference
variable and create an instance of
the report we have requested.

Finally, we must create an
instance of the report factory. As
we only want a single instance of
the factory, we could implement it
as a singleton using one of the
techniques described in either of
the articles in Issues 41 or 44. Per-
sonally, I prefer to use the ‘poor
man’s singleton’ (illustrated in
Listing 11), by creating a globally
visible function gFactoryReport,
which surfaces the unit-wide vari-
able uFactoryReport.

The function gFactoryReport
first checks to see if uFactory-
Report is unassigned and, if so, it
creates an instance. The function
gFactoryReport is called once in the
initialization section of the fac-
tory’s unit, so an instance is always
available. The variable
uFactoryReport is freed in the
finalization section of the unit.
This technique is so rough it
hardly deserves to be called a
singleton; however, it does work.

Now that we have created our
ReportFactory object, we can regis-
ter reports and call the factory to

TFactoryReport = class(TObject)
private
FReportMappings : TStringList;

public
Constructor Create;
Destructor Destroy; override;
Procedure RegisterReport(const pStrReportName: string;
pClassRef: TReportClass);

Function GetReport(const pStrReportName : string) : TFormReportAbstract;
end;

constructor TFactoryReport.Create;
begin
inherited ;
// Create a TSTringList to hold the ReportMappings
FReportMappings := TStringList.Create;

end;
destructor TFactoryReport.Destroy;
var
i : integer ;

begin
// Scan through FReportMappings and free any associated objects
for i := 0 to FReportMappings.Count-1 do
TObject(FReportMappings.Objects[i]).Free ;

FReportMappings.Free ;
inherited ;

end;

➤ Above: Listing 7 ➤ Below: Listing 8

16 The Delphi Magazine Issue 49

procedure TFactoryReport.RegisterReport(const pStrReportName: string;
pClassRef: TReportClass);

var
i : integer ;
lReportMapping : TReportMapping ;
lStrReportName : string ;

begin
lStrReportName := upperCase(pStrReportName) ;
// Does the reportName already exist?
i := FReportMappings.IndexOf(lStrReportName);
// If yes, then raise an exception.
if i <> - 1 then begin
messageDlg('Registering a duplicate report name <' + pStrReportName + '>',
mtInformation, [mbOK], 0);

// The report exists in the list
end else begin
// Create a reportMapping object
lReportMapping := TReportMapping.CreateExt(lStrReportName, pClassRef) ;
// Add the reportName, and reportMapping object to the list
FReportMappings.AddObject(upperCase(pStrReportName), lReportMapping) ;

end ;
end;

function TFactoryReport.GetReport(const pStrReportName: string):
TFormReportAbstract;

var
i : integer ;

begin
// Does the report exist in the list?
i := FReportMappings.IndexOf(upperCase(pStrReportName));
// If not, report an error
if i = -1 then begin
Raise Exception.Create('Request for invalid report name <' +
pStrReportName + '>' + #13 + 'Called in ' + ClassName + '.GetReport') ;

end;
// Create an instance of the report, and return. Note that the module that
// called GetReport is responsible for freeing the report.
result := TReportMapping(FReportMappings.Objects[i]).ReportClass.Create(nil);

end;

➤ Above: Listing 9 ➤ Below: Listing 10

create report objects. To register a
report, call:

gFactoryReport.RegisterReport(
cgStrReportNameListing,
TFormReportListing);

and to call the factory to create an
instance of the report use:

lReport :=
gFactoryReport.GetReport(
lStrReportName);

The UML for the factory we have
just created is shown in Figure 3.

Abstract And
Concrete Factories
Many of you will now be thinking
that this is great, but there is little
code reuse from this implementa-
tion of the factory pattern.

To demonstrate code reuse, I
have rewritten this example on the
companion disk as an abstract fac-
tory, which builds TObjects or
TComponents, and a concrete
factory, which creates the
TFormReportAbstract descendants.

I have also written a TFactory-
ConcreteAnimal which creates
TObject descendants and caches
them inside the factory. This dem-
onstrates how TObjects and
TComponents must be handled dif-
ferently, as well as the technique of
caching objects within the factory.

Caching objects within the fac-
tory is a useful technique where
the time required to create the

object is significant. An exam-
ple use of the cached factory
may be when you are creating
TQuery components and pre-
paring them to improve data-
base performance. The
prepared queries can be built
using the factory and cached
for later use. The UML diagram
for the abstract and concrete
factories is shown in Figure 4.

Other Uses
Factories may be used in any
situation where you want to

// The poor man's singleton, a function to return
// a reference to a variable with unit wide visibility.
function gFactoryReport : TFactoryReport;
implementation
uses
SysUtils; // for UpperCase

var
// A variable to hold our single instance of TFactoryReport. This variable has
// unit wide scope, hence the u prefix.
uFactoryReport : TFactoryReport;

// Our poor man's singleton. This function has global (or application) wide
// scope, hence the prefix g
function gFactoryReport : TFactoryReport ;
begin
// If uFactoryReport has not been created, then create one.
if uFactoryReport = nil then
uFactoryReport := TFactoryReport.Create ;

// Return a reference to uFactoryReport
result := uFactoryReport ;

end ;
{...Code...}
initialization
gFactoryReport;

finalization
uFactoryReport.Free;

➤ Listing 11

TFactory Report

TReport Mapping

GetReport(String): TFormReportAbstact
RegisterReport(String, TReportClass)
Destroy
Create

CreateExt(String, TReportClass)
ReportClass: TReportClass
ReportName: String

The TFactoryReport
has a list of
TReportMappings.

Call GetReport to
create an instance of
a report.

Call RegisterReport
to register a report
with the factory.

There is one
TReportMapping in
the list for each
registered report.

…

*

➤ Figure 3

delay the choice of object you shall
create until runtime. For example,
Delphi itself also uses factories
internally to produce remote data
modules and other COM related
objects.

Some other uses of factories
include: object streaming in COM,
DCOM or multi-tier, MIDAS appli-
cations, file based applications
where a user can choose to save a
data file in a variety of formats, and
applications with many user con-
figuration options. I leave the rest
to your imagination!

18 The Delphi Magazine Issue 49

TClass Mapping Abstract
TFactory Abstract

…

…

…

TFactory Concrete Animal TFactory Concrete Report TClass Mapping Component

FClass Mappings

TClass Mapping Object

… …

…

…

…

…

…

The TFactoryAbstract has a TStringList of
TClassMappingAbstracts, one for each TObject
or TComponent registered with the factory.

The TFactoryAbstract has a
TStringList which may be
used to cache objects.

*

Conclusion
I have found the factory pattern to
be a powerful technique for solving
a number of difficult programming
situations. I hope you are able to
put it to good use.

The starting point for more infor-
mation is the book Design Patterns,
by Gamma, Helm, Honhson and
Vlissides. Another good reference
is UML Distilled by Martin Fowler.
The useful Delphi Pattern website
is at www.burn-rubber.demon.co.
uk/patterns.htm.

Acknowlegements
Mark Richards is a Delphi System
Architect and introduced me to the
factory pattern while providing a
mentoring service during the
design and construction of a
multi-tier application in Delphi.
Mark is at mr@richdata.com.au.

Peter Hinrichsen is an analyst/
programmer from Melbourne,
Australia, specialising in applica-
tions for telecoms, banking and
finance. Email him at peter_
hinrichsen@techinsite.com.au

➤ Figure 4

	The Factory Pattern
	The Procedural Approach
	Disadvantages Of The Procedural Approach
	Factory Pattern To The Rescue
	Implementing The Report Factory
	Abstract And Concrete Factories
	Other Uses
	Conclusion
	Acknowlegements

